

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

The Mu2e Experiment at Fermilab: Exploring the Unknown

Ray Culbertson BLV 2015 26 Apr 2015

Mu2e in One Slide

• Search for new physics in $\mu N \rightarrow e N$

Controlling backgrounds

Schedule

The mu2e experiment

Detector details and status

The Mu2e Idea

Why this Experiment

- Search for CLFV
- $\mu^- + N \rightarrow e^- + N$
- Decay of μ to e is very(!) small in SM plus neutrino mass
- It does happen in many
 New Physics scenarios

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub

	AC	RVV2	AKM	$\delta ext{LL}$	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\mathrm{CP}}\left(B o X_s\gamma ight)$	*	*	*	***	***	*	?
$A_{7,8}(B o K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B o K^*\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s o \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L o \pi^0 u \bar{ u}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$ au o \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star\star\star$ signals large effects, $\star\star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Why this Experiment

$$\mathcal{L}_{\mathbf{CLFV}} = \frac{m_{\mu}}{(1+\kappa) \Lambda^{2}} \bar{\mu}_{R} \sigma_{\mu\nu} \mathbf{e}_{L} F^{\mu\nu} + \frac{\kappa}{(1+\kappa) \Lambda^{2}} \bar{\mu}_{L} \gamma_{\mu} \mathbf{e}_{L} (\bar{u}_{L} \gamma^{\mu} u_{L} + \bar{d}_{L} \gamma^{\mu} d_{L})$$

- Different from MEG expt.
 (μ→eγ) and complementary
- Having both measurements
 will help define the N.P. scenario
- Sensitive to N.P. scales far beyond LHC!

The New Physics Signal

- Muons captured on Al nucleus
- 864ns lifetime
- Nucleus+μ⁻ is a system, decays to nucleus+e⁻
- Conversion decays produce mono-energetic electrons

$$E_{\mu e} = m_{\mu}c^2 - E_b - E_{\text{recoil}}$$

= 104.973 MeV (for Al)

Mu2e measures:

$$R_{\mu e} = \frac{\Gamma[\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)]}{\Gamma[\mu^{-} + A(Z, N) \to \nu_{\mu} + A(Z - 1, N + 1)]}$$

Mu2e by the Numbers

- In a 3-year run of ...
 - 10²⁰ protons on target
 - 10¹⁸ stopped muons
- Expected single-event-sensitivity $R_{\mu e} = 2.9 \times 10^{-17}$
- Target limit (if no signal): $R_{\mu e} < 6 \times 10^{-17}$ @ 90% CL
- Factor 10⁴ improvement over the current limit!
 - $-R_{\mu e} < 7 \times 10^{-13} @ 90\% CL (on Au)$
 - SINDRUM II (W. Bertl et al., Eur. Phys. J. C 47, 337–346 (2006))
- Expected discovery sensitivity: R_{μe} > few x 10⁻¹⁶
 - Covers broad range of new physics theories!
 - LHC-scale SUSY will be many events, an obvious signal!

The Experiment

The Experimental Concept

- 8 GeV proton beam strikes target
- Graded field pushes pions and muons into Transport Solenoid
- This drawing represents 25 m end-to-end

The Experimental Concept

- Transport solenoid channel
 - Allow pion decay
 - S-shape to remove neutrals

- Collimators
 - Select momentum
 - Select μ-

- Stopping Target foils muons range out, stop
- Stopped μ- fall into orbit around Al nucleus

The Experimental Concept

- Conversion events would produce a 105 MeV electron
- Graded magnetic field pitches signal electrons towards detector and background into the uninstrumented region

Pulsed Muon Production

- Alternate:
 - 1) beam on target produce and stop muons (detector blinded)
 - 2) observe stopped muon decays
- Extinction of beam in search window is critical, <10⁻¹⁰
 - Special beamline design and monitor

Mu2e Status

The Backgrounds

Backgrounds 1 – *Pions*

- Pions produced in beam pulse also get captured
- 2% undergo Radiative Pion Capture (RPC)

- Also π , μ decays-in-flight and e- from production target
- Start the search window when these are small enough...

Backgrounds 2 – Muons

- Decay in Orbit (DIO)
 - 39% of stopped muons
 - Normal muon decay mode
 - Long tail with tiny phase space appears in the signal region
- The largest intrinsic b.g.
 - Scales with signal
- Muon Capture
 - $-\mu N \rightarrow \nu N'^*$
 - 61% of stopped muons
 - Not a background...

Backgrounds 3 – Cosmic Rays

- Cosmic ray interactions can produce electrons
- Would see 1/day way too high!
- Cosmic ray veto system must reject 99.99%

Backgrounds 4 - Antiprotons

- Proton beam is over threshold for anti-proton production
- Accepted they're negative, long-lived
- Annihilate into "energetic" multi-particle states pions, photons
- Reduced with two thin absorbers

Background Totals

Background counts expected in 3.6x10²⁰ POT

Category	Background process	Estimated yield	-
		(events)	
Intrinsic	Muon decay-in-orbit (DIO)	0.199 ± 0.092	54%
	Muon capture (RMC)	$0.000^{+0.004}_{-0.000}$	
Late Arriving	Pion capture (RPC)	0.023 ± 0.006	
	Muon decay-in-flight (μ-DIF)	< 0.003	
	Pion decay-in-flight (π-DIF)	$0.001 \pm < 0.001$	
	Beam electrons	0.003 ± 0.001	
Miscellaneous	Antiproton induced	0.047 ± 0.024	13%
	Cosmic ray induced	0.092 ± 0.020	25%
	Tot	al 0.37 ± 0.10	-

- DIO must be managed!
- What does this look like in the detector?

The Big Analysis Plot

Require high efficiency, but also low mass, good resolution!

Reconstructed e Momentum

The Detector

Tracker

- 20K 5 mm straw tubes
- Al, Au-coated 15μm Mylar
- 80/20 Ar/CO₂
- TDC and ADC readout

Mu2e Status

4/26/2015

Tracker

- 18 stations in 3 m cylinder
- ~ 40 hits per track
- 100 μm hit resolution

Tracker Performance

- Meets all physics requirements
- Total efficiency 9.2%
 - mostly acceptance
- Resolution 116 keV
- Robust against rate increases
- Low end is energy loss (lowers efficiency)
- High end tail smears DIO into signal region

Tracker Momentum Resolution

Calorimeter

- Two disks behind tracker
- 36-70 cm radius
- BaF₂ Crystals
 - Radiation hard
 - Non-hydrodscopic
- 1600 crystals
- 3x3x20cm (10 rad. len.)
- Read out by two

APD per crystal

Crystal samples, electronics, in testing now

Calorimeter

- Provides independent
 - Timing (0.5ns)
 - Energy (5%)

- Rejects
 - Pions, muons
 - Cosmic rays

Cosmic Ray Veto

Covers entire detector and half of transport solenoid

Dirt, concrete overburden helps...

Cosmic Ray Veto

- 4 layers of scintillator bars 5x2 cm, 3-6 m long
- Staggered to cover gaps
- 2 WLS fibers per bar, read out both ends with a SiPM
- Achieved 99.4% (in only one layer, in test beam)
 - meets requirements!

Magnets

- Are the heart of mu2e!
- NbTi superconducting
- Designs are well-advanced
- Conductors in production (75km)!

Magnets

	PS	TS	DS
Length (m)	4	13	11
Diameter (m)	1.7	0.4	1.9
Field @ start (T)	4.6	2.5	2.0
Field @ end (T)	2.5	2.0	1.0
Number of coils	3	50	11
Conductor (km)	10	44	15
Operating current (kA)	10	3	6
Stored energy (MJ)	80	20	30
Cold mass (tons)	11	26	8

Magnets

First TS prototype module in hand ...and in testing

Buildings

- Beamline is under construction
- Broke ground on the detector building last week!

Global Timeline

33

4/26/2015

Summary

- Mu2e will be a very sensitive search for new physics in CLFV
- Method is muon to electron conversion in field of Al nucleus:

$$\mu^- + N \rightarrow e^- + N$$

- Ultimate expected sensitivity (10²⁰ POT, 3y run):
 - Target limit: $R_{ue} < 6 \times 10^{-17}$ @ 90% CL
 - Factor 10⁴ improvement over current limit!
 - Discovery sensitivity: $R_{\mu e} > \text{few x } 10^{-16}$
- Mu2e design and construction is proceeding, on schedule
- Completed DOE CD-2, 3a → budget approved, baselined
- Operations starting in 2021

Backup

Beamline

- Fermilab is ideal for mu2e
- Repurposing much of the Tevatron anti-proton beamlines for 8 GeV protons
- New muon campus
- Booster produces pulses of 4x10¹² 8-GeV protons
- Recycler 4 bunches 10¹²
- Delivery ring many bunches of 3x10⁷
- 8 kW of protons
- Will run with Nova

The Detector

- Observe 105MeV electrons with high efficiency, good resolution
- Reject anything out of time, DIO, cosmic rays

All surrounded by the cosmic ray veto!

Tracker DIO Rejection

View along beam shows uninstrumented inner 38cm

- Rejects 99% of DIO
- Blind to muon beam

Tracker Timing

39

Activity in one microbunch (700ns data collection window)

Activity within 50ns of signal electron

Mu2e Status 4/26/2015

Cosmic Ray Veto

 Cosmic rays can produce 105 MeV electrons as decay, delta rays or bremsstrahlung followed by conversion pair

- Would expect about 1 per day CRV must reject 99.99%
- Final performance: 0.1 events expected in the whole run
 Fermilab